arXiv Analytics

Sign in

arXiv:1404.1633 [math.FA]AbstractReferencesReviewsResources

Boundedness for fractional Hardy-type operator on Herz-Morrey spaces with variable exponent

Jianglong Wu

Published 2014-04-06Version 1

In this paper, the fractional Hardy-type operator of variable order $\beta(x)$ is shown to be bounded from the Herz-Morrey spaces $M\dot{K}_{p_{_{1}},q_{_{1}}(\cdot)}^{\alpha,\lambda}(\mathbb{R}^{n})$ with variable exponent $q_{1}(x)$ into the weighted space $M\dot{K}_{p_{_{2}},q_{_{2}}(\cdot)}^{\alpha,\lambda}(\mathbb{R}^{n},\omega)$, where $\omega=(1+|x|)^{-\gamma(x)}$ with some $\gamma(x)>0$ and $ 1/q_{_{1}}(x)-1/q_{_{2}}(x)=\beta(x)/n$ when $q_{_{1}}(x)$ is not necessarily constant at infinity. It is assumed that the exponent $q_{_{1}}(x)$ satisfies the logarithmic continuity condition both locally and at infinity that $1< q_{1}(\infty)\le q_{1}(x)\le( q_{1})_{+}<\infty~(x\in \mathbb{R}^{n})$.

Comments: 13 pages
Journal: Bull. Korean Math. Soc. 51 (2014), No. 2, pp. 423-435
Categories: math.FA
Subjects: 42B20, 47B38
Related articles: Most relevant | Search more
arXiv:1511.02269 [math.FA] (Published 2015-11-07)
Boundedness for fractional Hardy-type operator on variable exponent Herz-Morrey spaces
arXiv:1404.1627 [math.FA] (Published 2014-04-06)
Boundedness of some sublinear operators on Herz-Morrey spaces with variable exponent
arXiv:1505.07001 [math.FA] (Published 2015-05-26)
Riesz transform on graphs under subgaussian estimates