arXiv Analytics

Sign in

arXiv:1404.1074 [math.FA]AbstractReferencesReviewsResources

A Jost-Pais-type reduction of (modified) Fredholm determinants for semi-separable operators in infinite dimensions

Fritz Gesztesy, Roger Nichols

Published 2014-04-03, updated 2014-08-29Version 3

We study the analog of semi-separable integral kernels in $\mathcal{H}$ of the type $$ K(x,x')=\begin{cases} F_1(x)G_1(x'), & a<x'< x< b, \\ F_2(x)G_2(x'), & a<x<x'<b, \end{cases} $$ where $-\infty\leq a<b\leq \infty$, and for a.e.\ $x \in (a,b)$, $F_j (x) \in \mathcal{B}_2(\mathcal{H}_j,\mathcal{H})$ and $G_j(x) \in \mathcal{B}_2(\mathcal{H},\mathcal{H}_j)$ such that $F_j(\cdot)$ and $G_j(\cdot)$ are uniformly measurable, and $$ \|F_j(\cdot)\|_{\mathcal{B}_2(\mathcal{H}_j,\mathcal{H})} \in L^2((a,b)), \; \|G_j (\cdot)\|_{\mathcal{B}_2(\mathcal{H},\mathcal{H}_j)} \in L^2((a,b)), \quad j=1,2, $$ with $\mathcal{H}$ and $\mathcal{H}_j$, $j=1,2$, complex, separable Hilbert spaces. Assuming that $K(\cdot, \cdot)$ generates a Hilbert-Schmidt operator $\mathbf{K}$ in $L^2((a,b);\mathcal{H})$, we derive the analog of the Jost-Pais reduction theory that succeeds in proving that the modified Fredholm determinant ${\det}_{2, L^2((a,b);\mathcal{H})}(\mathbf{I} - \alpha \mathbf{K})$, $\alpha \in \mathbb{C}$, naturally reduces to appropriate Fredholm determinants in the Hilbert spaces $\mathcal{H}$ (and $\mathcal{H} \oplus \mathcal{H}$). Some applications to Schr\"odinger operators with operator-valued potentials are provided.

Comments: 25 pages; typos removed. arXiv admin note: substantial text overlap with arXiv:1404.0739
Categories: math.FA, math-ph, math.MP, math.SP
Subjects: 47B10, 47G10, 34B27, 34L40
Related articles: Most relevant | Search more
arXiv:1404.0739 [math.FA] (Published 2014-04-03, updated 2014-04-22)
A Jost-Pais-type reduction of Fredholm determinants and some applications
arXiv:1712.01023 [math.FA] (Published 2017-12-04)
The C-Numerical Range in Infinite Dimensions
arXiv:math/0609632 [math.FA] (Published 2006-09-22, updated 2006-10-19)
A holomorphic map in infinite dimensions