arXiv Analytics

Sign in

arXiv:1403.6911 [math.NT]AbstractReferencesReviewsResources

Genus-2 curves and Jacobians with a given number of points

Reinier Bröker, Everett W. Howe, Kristin E. Lauter, Peter Stevenhagen

Published 2014-03-27, updated 2014-08-10Version 3

We study the problem of efficiently constructing a curve C of genus 2 over a finite field F for which either the curve C itself or its Jacobian has a prescribed number N of F-rational points. In the case of the Jacobian, we show that any `CM-construction' to produce the required genus-2 curves necessarily takes time exponential in the size of its input. On the other hand, we provide an algorithm for producing a genus-2 curve with a given number of points that, heuristically, takes polynomial time for most input values. We illustrate the practical applicability of this algorithm by constructing a genus-2 curve having exactly 10^2014 + 9703 (prime) points, and two genus-2 curves each having exactly 10^2013 points. In an appendix we provide a complete parametrization, over an arbitrary base field k of characteristic neither 2 nor 3, of the family of genus-2 curves over k that have k-rational degree-3 maps to elliptic curves, including formulas for the genus-2 curves, the associated elliptic curves, and the degree-3 maps.

Comments: Made a number of clarifications and corrected some typographical errors
Categories: math.NT, math.AG
Subjects: 14K22, 11G15, 11G20, 14G15
Related articles: Most relevant | Search more
arXiv:0806.0044 [math.NT] (Published 2008-05-31, updated 2008-06-09)
The Riemann Hypothesis for Function Fields over a Finite Field
arXiv:1212.3465 [math.NT] (Published 2012-12-14, updated 2014-03-18)
Recursive towers of curves over finite fields using graph theory
arXiv:0905.1642 [math.NT] (Published 2009-05-11, updated 2011-11-19)
Fast construction of irreducible polynomials over finite fields