arXiv:1403.3783 [math.AG]AbstractReferencesReviewsResources
Some Positivstellensätze for polynomial matrices
Published 2014-03-15, updated 2014-10-15Version 2
In this paper we give a version of Krivine-Stengle's Positivstellensatz, Schweighofer's Positivstellensatz, Scheiderer's local-global principle, Scheiderer's Hessian criterion and Marshall's boundary Hessian conditions for polynomial matrices, i.e. matrices with entries from the ring of polynomials in the variables (x_1,...,x_d) with real coefficients. Moreover, we characterize Archimedean quadratic modules of polynomial matrices, and study the relationship between the compactness of a subset in (\r^{d}) with respect to a subset (\hoa{G}) of polynomial matrices and the Archimedean property of the preordering and the quadratic module generated by (\hoa{G}).
Comments: 14 pages, Section 5 rewritten, three references added, final version, to be published in Positivity
Categories: math.AG
Keywords: polynomial matrices, positivstellensätze, marshalls boundary hessian conditions, characterize archimedean quadratic modules, scheiderers local-global principle
Tags: journal article
Related articles: Most relevant | Search more
Positivstellensätze for Algebras of Matrices
arXiv:2207.02748 [math.AG] (Published 2022-07-06)
Positivstellensätze for Semirings
arXiv:1310.6903 [math.AG] (Published 2013-10-25)
Positivstellensätze for Quantum Multigraphs