arXiv Analytics

Sign in

arXiv:1403.2073 [math.NA]AbstractReferencesReviewsResources

Generalized Canonical Correlation Analysis and Its Application to Blind Source Separation Based on a Dual-Linear Predictor Structure

Wei Liu

Published 2014-03-09Version 1

Blind source separation (BSS) is one of the most important and established research topics in signal processing and many algorithms have been proposed based on different statistical properties of the source signals. For second-order statistics (SOS) based methods, canonical correlation analysis (CCA) has been proved to be an effective solution to the problem. In this work, the CCA approach is generalized to accommodate the case with added white noise and it is then applied to the BSS problem for noisy mixtures. In this approach, the noise component is assumed to be spatially and temporally white, but the variance information of noise is not required. An adaptive blind source extraction algorithm is derived based on this idea and a further extension is proposed by employing a dual-linear predictor structure for blind source extraction (BSE).

Comments: 7 pages and 5 figures. The main aim is to show the inherent relationship between generalised canonical correlation analysis and the dual-linear predictor approach presented in two separate conference papers (references [15] and [16])
Categories: math.NA, stat.ML
Related articles: Most relevant | Search more
arXiv:0812.0494 [math.NA] (Published 2008-12-02)
On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics
arXiv:1002.4935 [math.NA] (Published 2010-02-26, updated 2013-05-24)
Multiarray Signal Processing: Tensor decomposition meets compressed sensing
arXiv:1007.1267 [math.NA] (Published 2010-07-08, updated 2011-02-22)
Shifted Power Method for Computing Tensor Eigenpairs