arXiv:1403.1122 [astro-ph.SR]AbstractReferencesReviewsResources
A new method for an objective, $χ^2$-based spectroscopic analysis of early-type stars
Andreas Irrgang, Norbert Przybilla, Ulrich Heber, Moritz Böck, Manfred Hanke, Maria-Fernanda Nieva, Keith Butler
Published 2014-03-05, updated 2014-04-14Version 2
A precise quantitative spectral analysis - encompassing atmospheric parameter and chemical elemental abundance determination - is time consuming due to its iterative nature and the multi-parameter space to be explored, especially when done "by eye". A robust automated fitting technique that is as trustworthy as traditional methods would allow for large samples of stars to be analyzed in a consistent manner in reasonable time. We present a semi-automated quantitative spectral analysis technique for early-type stars based on the concept of $\chi^2$ minimization. The method's main features are: far less subjective than typical "by eye" methods, correction for inaccurate continuum normalization, consideration of the whole useful spectral range, simultaneous sampling of the entire multi-parameter space (effective temperature, surface gravity, microturbulence, macroturbulence, projected rotational velocity, radial velocity, elemental abundances) to find the global best solution, applicable also to composite spectra. The method is fast, robust and reliable as seen from formal tests and from a comparison with previous analyses. Consistent quantitative spectral analyses of large samples of early-type stars can be performed quickly with very high accuracy.