arXiv Analytics

Sign in

arXiv:1402.2799 [math.CA]AbstractReferencesReviewsResources

Rectifiability via a square function and Preiss' theorem

Xavier Tolsa, Tatiana Toro

Published 2014-02-12, updated 2014-04-21Version 4

Let $E$ be a set in $\mathbb R^d$ with finite $n$-dimensional Hausdorff measure $H^n$ such that $\liminf_{r\to0}r^{-n} H^n(B(x,r)\cap E)>0$ for $H^n$-a.e. $x\in E$. In this paper it is shown that $E$ is $n$-rectifiable if and only if $$\int_0^1 \left|\frac{H^n(B(x,r)\cap E)}{r^n} - \frac{H^n(B(x,2r)\cap E)}{(2r)^n}\right|^2\,\frac{dr}r < \infty$$ for $H^n$-a.e. $x\in E$; and also if and only if $$ \lim_{r\to0}\left(\frac{H^n(B(x,r)\cap E)}{r^n} - \frac{H^n(B(x,2r)\cap E)}{(2r)^n}\right) = 0$$ for $H^n$-a.e. $x\in E$. Other more general results involving Radon measures are also proved.

Comments: Minor corrections and adjustments
Categories: math.CA, math.AP
Subjects: 28A75, 28A78, 42B20
Related articles: Most relevant | Search more
arXiv:1501.01572 [math.CA] (Published 2015-01-07)
Characterization of $n$-rectifiability in terms of Jones' square function: Part II
arXiv:1501.01569 [math.CA] (Published 2015-01-07)
Characterization of $n$-rectifiability in terms of Jones' square function: Part I
arXiv:1910.13747 [math.CA] (Published 2019-10-30)
A square function involving the center of mass and rectifiability