arXiv:1401.5927 [math.FA]AbstractReferencesReviewsResources
Asymptotic Behaviour and Cyclic Properties of Weighted Shifts on Directed Trees
Published 2014-01-23, updated 2016-04-02Version 2
In this paper we investigate a new class of operators called weighted shifts on directed trees introduced recently in [Z. J. Jablonski, I. B. Jung and J. Stochel, A Non-hyponormal Operator Generating Stieltjes Moment Sequences, J. Funct. Anal. 262 (2012), no. 9, 3946--3980.]. This class is a natural generalization of the so called weighted bilateral, unilateral and backward shift operators. In the first part of the paper we calculate the asymptotic limit and the isometric asymptote of a contractive weighted shift on a directed tree and that of the adjoint. Then we use the asymptotic behaviour and similarity properties to deal with cyclicity. We also show that a weighted backward shift operator is cyclic if and only if there is at most one zero weight.