arXiv Analytics

Sign in

arXiv:1401.2159 [astro-ph.SR]AbstractReferencesReviewsResources

The impact of rotation on the line profiles of Wolf-Rayet stars

Tomer Shenar, Wolf-Rainer Hamann, Helge Todt

Published 2014-01-09Version 1

Massive Wolf-Rayet stars are recognized today to be in a very common, but short, evolutionary phase of massive stars. While our understanding of Wolf-Rayet stars has increased dramatically over the past decades, it remains unclear whether rapid rotators are among them. There are various indications that rapidly rotating Wolf-Rayet stars should exist. Unfortunately, due to their expanding atmospheres, rotational velocities of Wolf-Rayet stars are very difficult to measure. However, recently observed spectra of several Wolf-Rayet stars reveal peculiarly broad and round emission lines. Could these spectra imply rapid rotation? In this work, we model the effects of rotation on the atmospheres of Wolf-Rayet stars. We further investigate whether the peculiar spectra of five Wolf-Rayet stars may be explained with the help of stellar rotation, infer appropriate rotation parameters, and discuss the implications of our results. We make use of the Potsdam Wolf-Rayet (PoWR) non-LTE model atmosphere code. Since the observed spectra of Wolf-Rayet stars are mainly formed in their expanding atmospheres, rotation must be accounted for with a 3D integration scheme of the formal integral. For this purpose, we assume a rotational velocity field consisting of an inner co-rotating domain and an outer domain, where the angular momentum is conserved. We find that rotation can reproduce the unique spectra analyzed here. However, the inferred rotational velocities at the stellar surface are large (~200 km/s), and the inferred co-rotation radii (~10 stellar radii) suggest the existence of very strong photospheric magnetic fields (~20 kG).

Related articles: Most relevant | Search more
arXiv:1908.01989 [astro-ph.SR] (Published 2019-08-06)
New study of the line profiles of sodium perturbed by H2
arXiv:2305.06079 [astro-ph.SR] (Published 2023-05-10)
Temperature and density dependence of line profiles of sodium perturbed by helium
arXiv:2106.10351 [astro-ph.SR] (Published 2021-06-18)
Solar prominence diagnostics from non-LTE modelling of Mgii h&k line profiles