arXiv:1312.5276 [math.PR]AbstractReferencesReviewsResources
Integration by parts and representation of information functionals
Ivan Nourdin, Giovanni Peccati, Yvik Swan
Published 2013-12-18, updated 2014-04-18Version 2
We introduce a new formalism for computing expectations of functionals of arbitrary random vectors, by using generalised integration by parts formulae. In doing so we extend recent representation formulae for the score function introduced in Nourdin, Peccati and Swan (JFA, to appear) and also provide a new proof of a central identity first discovered in Guo, Shamai, and Verd{\'u} (IEEE Trans. Information Theory, 2005). We derive a representation for the standardized Fisher information of sums of i.i.d. random vectors which use our identities to provide rates of convergence in information theoretic central limit theorems (both in Fisher information distance and in relative entropy).