arXiv Analytics

Sign in

arXiv:1312.3531 [math.NT]AbstractReferencesReviewsResources

On equal values of power sums of arithmetic progressions

A. Bazsó, D. Kreso, F. Luca, Á. Pintér

Published 2013-12-12Version 1

In this paper we consider the Diophantine equation \begin{align*}b^k +\left(a+b\right)^k &+ \cdots + \left(a\left(x-1\right) + b\right)^k=\\ &=d^l + \left(c+d\right)^l + \cdots + \left(c\left(y-1\right) + d\right)^l, \end{align*} where $a,b,c,d,k,l$ are given integers. We prove that, under some reasonable assumptions, this equation has only finitely many integer solutions.

Comments: This version differs slightly from the published version in its exposition
Journal: Glas. Mat., 47, 2012, 253--263
Categories: math.NT
Subjects: 11B68, 11D41
Related articles: Most relevant | Search more
arXiv:1501.01843 [math.NT] (Published 2015-01-08)
On the coefficients of power sums of arithmetic progressions
arXiv:1705.05331 [math.NT] (Published 2017-05-15)
The denominators of power sums of arithmetic progressions
arXiv:1406.7326 [math.NT] (Published 2014-06-27)
Bounding sums of the Möbius function over arithmetic progressions