arXiv Analytics

Sign in

arXiv:1312.3378 [math.NA]AbstractReferencesReviewsResources

Expectation Propagation for Nonlinear Inverse Problems -- with an Application to Electrical Impedance Tomography

Matthias Gehre, Bangti Jin

Published 2013-12-12Version 1

In this paper, we study a fast approximate inference method based on expectation propagation for exploring the posterior probability distribution arising from the Bayesian formulation of nonlinear inverse problems. It is capable of efficiently delivering reliable estimates of the posterior mean and covariance, thereby providing an inverse solution together with quantified uncertainties. Some theoretical properties of the iterative algorithm are discussed, and the efficient implementation for an important class of problems of projection type is described. The method is illustrated with one typical nonlinear inverse problem, electrical impedance tomography with complete electrode model, under sparsity constraints. Numerical results for real experimental data are presented, and compared with that by Markov chain Monte Carlo. The results indicate that the method is accurate and computationally very efficient.

Related articles: Most relevant | Search more
arXiv:1509.05084 [math.NA] (Published 2015-09-16)
An Accelerated Dual Gradient Method and Applications in Viscoplasticity
arXiv:1607.00368 [math.NA] (Published 2016-07-01)
An Application of ParaExp to Electromagnetic Wave Problems
arXiv:1609.00581 [math.NA] (Published 2016-09-02)
$AB$-algorithm and its application for solving matrix square roots