arXiv Analytics

Sign in

arXiv:1312.1500 [math.CA]AbstractReferencesReviewsResources

Asymptotic expansions of integral means and applications to the ratio of gamma functions

Neven Elezović, Lenka Vukšić

Published 2013-12-05Version 1

Integral means are important class of bivariate means. In this paper we prove the very general algorithm for calculation of coefficients in asymptotic expansion of integral mean. It is based on explicit solving the equation of the form $B(A(x))=C(x)$, where $B$ and $C$ have known asymptotic expansions. The results are illustrated by calculation of some important integral means connected with gamma and digamma functions.

Related articles: Most relevant | Search more
arXiv:0909.0230 [math.CA] (Published 2009-09-01, updated 2009-10-04)
Mittag-Leffler Functions and Their Applications
arXiv:math/0304345 [math.CA] (Published 2003-04-22)
A Converse of the Jensen Inequality for Convex Mappings of Several Variables and Applications
arXiv:math/0010162 [math.CA] (Published 2000-10-16)
A new A_n extension of Ramanujan's 1-psi-1 summation with applications to multilateral A_n series