arXiv Analytics

Sign in

arXiv:1311.6680 [math.CO]AbstractReferencesReviewsResources

Poset topology and homological invariants of algebras arising in algebraic combinatorics

Stuart Margolis, Franco Saliola, Benjamin Steinberg

Published 2013-11-26Version 1

We present a beautiful interplay between combinatorial topology and homological algebra for a class of monoids that arise naturally in algebraic combinatorics. We explore several applications of this interplay. For instance, we provide a new interpretation of the Leray number of a clique complex in terms of non-commutative algebra. R\'esum\'e. Nous pr\'esentons une magnifique interaction entre la topologie combinatoire et l'alg\`ebre homologique d'une classe de mono\"ides qui figurent naturellement dans la combinatoire alg\'ebrique. Nous explorons plusieurs applications de cette interaction. Par exemple, nous introduisons une nouvelle interpr\'etation du nombre de Leray d'un complexe de clique en termes de la dimension globale d'une certaine alg\`ebre non commutative.

Comments: This is an extended abstract surveying the results of arXiv:1205.1159 and an article in preparation. 12 pages, 3 Figures
Categories: math.CO, math.GR, math.RA, math.RT
Subjects: 05E10, 16E10, 16G10, 52C35, 05E45
Related articles: Most relevant | Search more
arXiv:1508.05446 [math.CO] (Published 2015-08-22)
Cell complexes, poset topology and the representation theory of algebras arising in algebraic combinatorics and discrete geometry
arXiv:math/0602226 [math.CO] (Published 2006-02-10, updated 2006-02-11)
Poset Topology: Tools and Applications
arXiv:2306.17511 [math.CO] (Published 2023-06-30)
Computational Complexity in Algebraic Combinatorics