arXiv Analytics

Sign in

arXiv:1311.0385 [astro-ph.HE]AbstractReferencesReviewsResources

Accretion of multi-species plasma onto black holes

Indranil Chattopadhyay

Published 2013-11-02Version 1

Matter falling onto a black hole is trans-relativistic, transonic, and close to the horizon it is sub-Keplerian. Such a flow shows the existence of multiple critical point, shocks etc. Employing relativistic equation of state and realistic composition, it has been shown that the solution strongly depend on the composition of the fluid. Electron-positron fluid is the least relativistic, to the extent that multiple critical points, shocks etc do not form. The most relativistic fluid is the one whose ratio of proton to electron number density is ~ 0.2. Since the solution strongly depend on composition, the emitted radiation should strongly depend on the composition too.

Comments: Pages 3, 2 figures. Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity, edited by Thibault Damour, Robert T. Jantzen and Remo Ruffini. ISBN 978-981-4374-51-4. Singapore: World Scientific, 2012, p.982
Journal: 2012mgm..conf..982C
Categories: astro-ph.HE
Related articles: Most relevant | Search more
arXiv:0905.2252 [astro-ph.HE] (Published 2009-05-14)
Monte-Carlo Simulations of Thermal Comptonization Process in a Two Component Accretion Flow Around a Black Hole
arXiv:1005.3365 [astro-ph.HE] (Published 2010-05-19)
"Comets" orbiting a black hole
R. Maiolino et al.
arXiv:1409.5447 [astro-ph.HE] (Published 2014-09-18)
Event-Horizon-Telescope Evidence for Alignment of the Black Hole in the Center of the Milky Way with the Inner Stellar Disk