arXiv:1310.8373 [math.DG]AbstractReferencesReviewsResources
Lipschitz-Volume rigidity on limit spaces with Ricci curvature bounded from below
Published 2013-10-31, updated 2015-06-23Version 2
We prove a Lipschitz-Volume rigidity theorem for the non-collapsed Gromov-Hausdorff limits of manifolds with Ricci curvature bounded from below. This is a counterpart of the Lipschitz-Volume rigidity in Alexandrov geometry.
Journal: Differential Geom. Appl., 35, (2014), 50-55
Categories: math.DG
Keywords: ricci curvature, limit spaces, geometric rigidity theorem respect, volume rigidity results, alexandrov geometry
Tags: journal article
Related articles: Most relevant | Search more
arXiv:math/0003068 [math.DG] (Published 2000-03-13)
Ricci Curvature, Minimal Volumes, and Seiberg-Witten Theory
Lipschitz-Volume rigidity in Alexandrov geometry
arXiv:1605.08461 [math.DG] (Published 2016-05-26)
A Bochner Formula for Harmonic Maps into Non-Positively Curved Metric Spaces