arXiv:1310.7747 [astro-ph.SR]AbstractReferencesReviewsResources
Constraints on the explosion mechanism and progenitors of type Ia supernovae
Luc Dessart, Stephane Blondin, D. John Hillier, Alexei Khokhlov
Published 2013-10-29, updated 2014-03-25Version 2
Observations of SN 2011fe at early times reveal an evolution analogous to a fireball model of constant color. In contrast, our unmixed delayed detonations of Chandrasekhar-mass white dwarfs (DDC series) exhibit a faster brightening concomitant with a shift in color to the blue. In this paper, we study the origin of these discrepancies. We find that strong chemical mixing largely resolves the photometric mismatch at early times, but it leads to an enhanced line broadening that contrasts, for example, with the markedly narrow SiII6355A line of SN 2011fe. We also explore an alternative configuration with pulsational-delayed detonations (PDDEL model series). Because of the pulsation, PDDEL models retain more unburnt carbon, have little mass at high velocity, and have a much hotter outer ejecta after the explosion. The pulsation does not influence the inner ejecta, so PDDEL and DDC models exhibit similar radiative properties beyond maximum. However, at early times, PDDEL models show bluer optical colors and a higher luminosity, even for weak mixing. Their early-time radiation is derived primarily from the initial shock-deposited energy in the outer ejecta rather than radioactive decay heating. Furthermore, PDDEL models show short-lived CII lines, reminiscent of SN 2013dy. They typically exhibit lines that are weaker, narrower, and of near-constant width, reminiscent of SN 2011fe. In addition to multi-dimensional effects, varying configurations for such ``pulsations" offer a source of spectral diversity amongst SNe Ia. PDDEL and DDC models also provide one explanation for low- and high-velocity gradient SNe Ia.