arXiv:1310.4312 [math.FA]AbstractReferencesReviewsResources
p-Summing Multiplication Operators, dyadic Hardy Spaces and atomic Decomposition
Paul F. X. Müller, Johanna Penteker
Published 2013-10-16, updated 2014-09-24Version 4
We constructively determine the Pietsch measure of the 2-summing multiplication operator \[\mathcal{M}_u:\ell^{\infty} \rightarrow H^p, \quad (\varphi_I) \mapsto \sum \varphi_Ix_Ih_I. \] Our construction of the Pietsch measure for the multiplication operator $\mathcal{M}_u$ involves the Haar coefficients of $u$ and its atomic decomposition.
Comments: 23 pages
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1512.04790 [math.FA] (Published 2015-12-15)
Absolutely summing operators and atomic decomposition in bi-parameter Hardy spaces
arXiv:1409.4612 [math.FA] (Published 2014-09-16)
Atomic decompositions for Hardy spaces related to Schrödinger operators
arXiv:1210.3332 [math.FA] (Published 2012-10-11)
On Pietsch measures for summing operators and dominated polynomials