arXiv:1310.4005 [math.PR]AbstractReferencesReviewsResources
On some applications of a symbolic representation of non-centered Lévy processes
Published 2013-10-15Version 1
By using a symbolic technique known in the literature as the classical umbral calculus, we characterize two classes of polynomials related to L\'evy processes: the Kailath-Segall and the time-space harmonic polynomials. We provide the Kailath-Segall formula in terms of cumulants and we recover simple closed-forms for several families of polynomials with respect to not centered L\'evy processes, such as the Hermite polynomials with the Brownian motion, the Poisson-Charlier polynomials with the Poisson processes, the actuarial polynomials with the Gamma processes, the first kind Meixner polynomials with the Pascal processes, the Bernoulli, Euler and Krawtchuk polynomials with suitable random walks.
Journal: Communications in Statistics - Theory and Methods (2013),42:21, 3974-3988,
Categories: math.PR
Keywords: non-centered lévy processes, symbolic representation, first kind meixner polynomials, applications, time-space harmonic polynomials
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1201.5870 [math.PR] (Published 2012-01-27)
Enlargements of filtrations and applications
arXiv:1012.5687 [math.PR] (Published 2010-12-28)
Coupling and Applications
arXiv:1105.1372 [math.PR] (Published 2011-05-06)
An inequality for means with applications