arXiv Analytics

Sign in

arXiv:1310.2524 [math.OA]AbstractReferencesReviewsResources

Holomorphic functional calculus on upper triangular forms in finite von Neumann algebras

Ken Dykema, Fedor Sukochev, Dmitriy Zanin

Published 2013-10-09Version 1

The decompositions of an element of a finite von Neumann algebra into the sum of a normal operator plus an s.o.t.-quasinilpotent operator, obtained using the Haagerup--Schultz hyperinvariant projections, behave well with respect to holomorphic functional calculus.

Related articles: Most relevant | Search more
arXiv:1406.2774 [math.OA] (Published 2014-06-11, updated 2015-11-21)
Upper Triangular Forms and Spectral Orderings in a II_1-factor
arXiv:1703.05695 [math.OA] (Published 2017-03-16)
Joint spectral distributions and invariant subspaces for commuting operators in a finite von Neumann algebra
arXiv:1711.08786 [math.OA] (Published 2017-11-23)
On a class of determinant preserving maps for finite von Neumann algebras