arXiv:1310.2524 [math.OA]AbstractReferencesReviewsResources
Holomorphic functional calculus on upper triangular forms in finite von Neumann algebras
Ken Dykema, Fedor Sukochev, Dmitriy Zanin
Published 2013-10-09Version 1
The decompositions of an element of a finite von Neumann algebra into the sum of a normal operator plus an s.o.t.-quasinilpotent operator, obtained using the Haagerup--Schultz hyperinvariant projections, behave well with respect to holomorphic functional calculus.
Related articles: Most relevant | Search more
Upper Triangular Forms and Spectral Orderings in a II_1-factor
arXiv:1703.05695 [math.OA] (Published 2017-03-16)
Joint spectral distributions and invariant subspaces for commuting operators in a finite von Neumann algebra
arXiv:1711.08786 [math.OA] (Published 2017-11-23)
On a class of determinant preserving maps for finite von Neumann algebras