arXiv Analytics

Sign in

arXiv:1310.0680 [math.NT]AbstractReferencesReviewsResources

Characteristic ideals and Iwasawa theory

Andrea Bandini, Francesc Bars, Ignazio Longhi

Published 2013-10-02, updated 2014-07-21Version 2

Let $\L$ be a non-noetherian Krull domain which is the inverse limit of noetherian Krull domains $\L_d$ and let $M$ be a finitely generated $\L$-module which is the inverse limit of $\L_d$-modules $M_d\,$. Under certain hypotheses on the rings $\L_d$ and on the modules $M_d\,$, we define a pro-characteristic ideal for $M$ in $\L$, which should play the role of the usual characteristic ideals for finitely generated modules over noetherian Krull domains. We apply this to the study of Iwasawa modules (in particular of class groups) in a non-noetherian Iwasawa algebra $\Z_p[[\Gal(\calf/F)]]$, where $F$ is a function field of characteristic $p$ and $\Gal(\calf/F)\simeq\Z_p^\infty$.

Comments: 15 pages, substantial chenges in exposition, new section 2.3
Categories: math.NT, math.AC
Subjects: 11R23, 13F25
Related articles: Most relevant | Search more
arXiv:1005.2289 [math.NT] (Published 2010-05-13, updated 2015-05-03)
Aspects of Iwasawa theory over function fields
arXiv:1009.3729 [math.NT] (Published 2010-09-20, updated 2015-02-17)
Seminar Notes on Open Questions in Iwasawa Theory - SNOQIT I: The $Λ[ G ]$-modules of Iwasawa theory II: Units and Kummer theory in Iwasawa extensions
arXiv:1608.03112 [math.NT] (Published 2016-08-10)
Iwasawa theory of Rubin-Stark units and class group