arXiv:1309.7576 [math.AP]AbstractReferencesReviewsResources
Towards spaces of harmonic functions with traces in square Campanato space and its scaling invariant
Renjin Jiang, Jie Xiao, Dachun Yang
Published 2013-09-29, updated 2014-02-06Version 2
For $n\ge 1$ and $\alpha\in (-1,1)$, let $H^{\alpha,2}$ be the space of harmonic functions $u$ on the upper half space $\mathbb{R}^{n+1}_+$ satisfying $$\displaystyle\sup_{(x_0,r)\in \mathbb R^{n+1}_+}r^{-(2\alpha+n)}\int_{B(x_0,r)}\int_0^r|\nabla_{x,t} u(x,t)|^2t\,dt\,dx<\infty,$$ and $\mathcal{L}_{2,n+2\alpha}$ be the Campanato space on $\mathbb R^n$. We show that $H^{\alpha,2}$ coincide with $e^{-t\sqrt{-\Delta}}\mathcal{L}_{2,n+2\alpha}$ for all $\alpha\in (-1,1)$, where the case $\alpha\in [0,1)$ was originally discovered by Fabes, Johnson and Neri [Indiana Univ. Math. J. 25 (1976), 159-170] and yet the case $\alpha\in (-1,0)$ was left open. Moreover, for the scaling invariant version of $H^{\alpha,2}$, $\mathcal{H}^{\alpha,2}$, which comprises all harmonic functions $u$ on $\mathbb R^{n+1}_+$ satisfying $$\sup_{(x_0,r)\in\mathbb R^{n+1}_+}r^{-(2\alpha+n)}\int_{B(x_0,r)} \int_0^r|\nabla_{x,t} u(x,t)|^2\,t^{1+2\alpha} \,dt\,dx<\infty,$$ we show that $\mathcal{H}^{\alpha,2}=e^{-t\sqrt{-\Delta}}(-\Delta)^\frac{\alpha}{2}\mathcal{L}_{2,n+2\alpha}$, where $(-\Delta)^{\frac{\alpha}{2}}\mathcal{L}_{2,n+2\alpha}$ is the collection of all functions $f$ such that $(-\Delta)^{-\frac{\alpha}{2}}f$ are in $\mathcal{L}_{2,n+2\alpha}$. Analogues for solutions to the heat equation are also established. As an application, we show that the spaces $\big((-\Delta)^{\frac{\alpha}{2}}\mathcal{L}_{2,n+2\alpha}\big)^{-1}$ unify $Q_{\alpha}^{-1}$, ${\mathrm{BMO}}^{-1}$ and $\dot{B}^{-1,\infty}_\infty$ naturally.