arXiv Analytics

Sign in

arXiv:1309.6454 [math.AP]AbstractReferencesReviewsResources

Principal eigenvalue of the fractional Laplacian with a large incompressible drift

Krzysztof Bogdan, Tomasz Komorowski

Published 2013-09-25Version 1

We add a divergence-free drift with increasing magnitude to the fractional Laplacian on a bounded smooth domain, and discuss the behavior of the principal eigenvalue for the Dirichlet problem. The eigenvalue remains bounded if and only if the drift has non-trivial first integrals in the domain of the quadratic form of the fractional Laplacian.

Related articles: Most relevant | Search more
arXiv:1409.7421 [math.AP] (Published 2014-09-25)
Symmetry breaking for an elliptic equation involving the Fractional Laplacian
arXiv:1209.6104 [math.AP] (Published 2012-09-27, updated 2015-01-28)
Fractional Laplacian on the torus
arXiv:1009.4042 [math.AP] (Published 2010-09-21, updated 2015-03-23)
Uniqueness and Nondegeneracy of Ground States for $(-Δ)^s Q + Q - Q^{α+1} = 0$ in $\mathbb{R}$