arXiv Analytics

Sign in

arXiv:1309.5527 [math.CO]AbstractReferencesReviewsResources

On the (co)homology of the poset of weighted partitions

Rafael S. González D'León, Michelle L. Wachs

Published 2013-09-21, updated 2015-04-04Version 3

We consider the poset of weighted partitions $\Pi_n^w$, introduced by Dotsenko and Khoroshkin in their study of a certain pair of dual operads. The maximal intervals of $\Pi_n^w$ provide a generalization of the lattice $\Pi_n$ of partitions, which we show possesses many of the well-known properties of $\Pi_n$. In particular, we prove these intervals are EL-shellable, we show that the M\"obius invariant of each maximal interval is given up to sign by the number of rooted trees on on node set $\{1,2,\dots,n\}$ having a fixed number of descents, we find combinatorial bases for homology and cohomology, and we give an explicit sign twisted $\mathfrak{S}_n$-module isomorphism from cohomology to the multilinear component of the free Lie algebra with two compatible brackets. We also show that the characteristic polynomial of $\Pi_n^w$ has a nice factorization analogous to that of $\Pi_n$.

Comments: 50 pages, final version, to appear in Trans. AMS
Categories: math.CO
Subjects: 05E45, 05E18, 05A18, 17B01
Related articles: Most relevant | Search more
arXiv:1408.5415 [math.CO] (Published 2014-08-22)
On the free Lie algebra with multiple brackets
arXiv:0807.3519 [math.CO] (Published 2008-07-22)
On the support of the free Lie algebra: the Schützenberger problems
arXiv:1011.1528 [math.CO] (Published 2010-11-05)
On twin and anti-twin words in the support of the free Lie algebra