arXiv:1309.4192 [math.AT]AbstractReferencesReviewsResources
New lower bounds for the topological complexity of aspherical spaces
Mark Grant, Gregory Lupton, John Oprea
Published 2013-09-17Version 1
We show that the topological complexity of an aspherical space $X$ is bounded below by the cohomological dimension of the direct product $A\times B$, whenever $A$ and $B$ are subgroups of $\pi_1(X)$ whose conjugates intersect trivially. For instance, this assumption is satisfied whenever $A$ and $B$ are complementary subgroups of $\pi_1(X)$. This gives computable lower bounds for the topological complexity of many groups of interest (including semidirect products, pure braid groups, certain link groups, and Higman's acyclic four-generator group), which in some cases improve upon the standard lower bounds in terms of zero-divisors cup-length. Our results illustrate an intimate relationship between the topological complexity of an aspherical space and the subgroup structure of its fundamental group.