arXiv Analytics

Sign in

arXiv:1308.6638 [astro-ph.GA]AbstractReferencesReviewsResources

Constraining the dark cusp in the Galactic Center by long-period binaries

Tal Alexander, Oliver Pfuhl

Published 2013-08-30Version 1

Massive black holes (MBHs) in galactic nuclei are believed to be surrounded by a high density stellar cluster, whose mass is mostly in hard-to-detect faint stars and compact remnants. Such dark cusps dominate the dynamics near the MBH: a dark cusp in the Galactic center (GC) of the Milky Way would strongly affect orbital tests of General Relativity there; on cosmic scales, dark cusps set the rates of gravitational wave emission events from compact remnants that spiral into MBHs, and they modify the rates of tidal disruption events, to list only some implications. A recently discovered long-period massive young binary (P_12 <~ 1 yr, M_12 ~ O(100 M_sun), T_12 ~ 6x10^6 yr), only ~0.1 pc from the Galactic MBH (Pfuhl et al 2013), sets a lower bound on the 2-body relaxation timescale there, min t_rlx ~ (P_12/M_12)^(2/3)T_12 ~ 10^7 yr, and correspondingly, an upper bound on the stellar number density, max n ~ few x 10^8/<M_star^2> 1/pc^3, based on the binary's survival against evaporation by the dark cusp. However, a conservative dynamical estimate, the drain limit, implies t_rlx > O(10^8) yr. Such massive binaries are thus too short-lived and tightly bound to constrain a dense relaxed dark cusp. We explore here in detail the use of longer-period, less massive and longer-lived binaries (P_12 ~ few yr, M_12 ~ 2-4 M_sun, T_12 ~ 10^8-10^10 yr), presently just below the detection threshold, for probing the dark cusp, and develop the framework for translating their future detections among the giants in the GC into dynamical constraints.

Related articles: Most relevant | Search more
arXiv:0909.1959 [astro-ph.GA] (Published 2009-09-10, updated 2009-12-28)
Tidal break-up of binary stars at the Galactic center and its consequences
arXiv:1704.05850 [astro-ph.GA] (Published 2017-04-19)
Supernova Kicks and Dynamics of Compact Remnants in the Galactic Centre
arXiv:1002.1171 [astro-ph.GA] (Published 2010-02-05)
ATCA Detection of SiO Masers in the Inner Parsecs of the Galactic Center