arXiv:1308.5517 [math.LO]AbstractReferencesReviewsResources
The infinite random simplicial complex
Andrew Brooke-Taylor, Damiano Testa
Published 2013-08-26Version 1
We study the Fraisse limit of the class of all finite simplicial complexes. Whilst the natural model-theoretic setting for this class uses an infinite language, a range of results associated with Fraisse limits of structures for finite languages carry across to this important example. We introduce the notion of a local class, with the class of finite simplicial complexes as an archetypal example, and in this general context prove the existence of a 0-1 law and other basic model-theoretic results. Constraining to the case where all relations are symmetric, we show that every direct limit of finite groups, and every metrizable profinite group, appears as a subgroup of the automorphism group of the Fraisse limit. Finally, for the specific case of simplicial complexes, we show that the geometric realisation is topologically surprisingly simple: despite the combinatorial complexity of the Fraisse limit, its geometric realisation is homeomorphic to the infinite simplex.