arXiv Analytics

Sign in

arXiv:1308.4919 [math.DS]AbstractReferencesReviewsResources

Transients in the Synchronization of Oscillator Arrays

Carlos E. Cantos, J. J. P. Veerman

Published 2013-07-26, updated 2014-10-09Version 4

The purpose of this note is threefold. First we state a few conjectures that allow us to rigorously derive a theory which is asymptotic in N (the number of agents) that describes transients in large arrays of (identical) linear damped harmonic oscillators in R with completely decentralized nearest neighbor interaction. We then use the theory to establish that in a certain range of the parameters transients grow linearly in the number of agents (and faster outside that range). Finally, in the regime where this linear growth occurs we give the constant of proportionality as a function of the signal velocities (see [3]) in each of the two directions. As corollaries we show that symmetric interactions are far from optimal and that all these results independent of (reasonable) boundary conditions.

Related articles: Most relevant | Search more
arXiv:1906.08572 [math.DS] (Published 2019-06-20)
Synchronization of linear oscillators coupled through dynamic networks with interior nodes
arXiv:1808.03375 [math.DS] (Published 2018-08-10)
Lift and Synchronization
arXiv:1805.03786 [math.DS] (Published 2018-05-10)
Bifurcations in the Kuramoto model on graphs