arXiv Analytics

Sign in

arXiv:1308.0213 [physics.flu-dyn]AbstractReferencesReviewsResources

On the strength of the nonlinearity in isotropic turbulence

Wouter Bos, Robert Rubinstein

Published 2013-08-01Version 1

Turbulence governed by the Navier-Stokes equations shows a tendency to evolve towards a state in which the nonlinearity is diminished. In fully developed turbulence this tendency can be measured by comparing the variance of the nonlinear term to the variance of the same quantity measured in a Gaussian field with the same energy distribution. In order to study this phenomenon at high Reynolds numbers, a version of the Direct Interaction Approximation is used to obtain a closed expression for the statistical average of the mean-square nonlinearity. The wavenumber spectrum of the mean-square nonlinear term is evaluated and its scaling in the inertial range is investigated as a function of the Reynolds number. Its scaling is dominated by the sweeping by the energetic scales, but this sweeping is weaker than predicted by a random sweeping estimate. At inertial range scales, the depletion of nonlinearity as a function of the wavenumber is observed to be constant. At large it is observed that the mean-square nonlinearity is larger than its Gaussian estimate, which is shown to be related to the non-Gaussianity of the Reynolds-stress fluctuations at these scales.

Comments: Accepted for publication in J. Fluid Mech
Journal: Journal of Fluid Mechanics 733 (2013) 158-170
Categories: physics.flu-dyn, nlin.CD
Related articles: Most relevant | Search more
arXiv:1305.6275 [physics.flu-dyn] (Published 2013-05-27, updated 2013-11-29)
Orientation dynamics of small, triaxial-ellipsoidal particles in isotropic turbulence
arXiv:2005.03602 [physics.flu-dyn] (Published 2020-05-07)
Entropy, irreversibility and cascades in the inertial range of isotropic turbulence
arXiv:1703.03501 [physics.flu-dyn] (Published 2017-03-10)
Isotropic turbulence in compact space