arXiv Analytics

Sign in

arXiv:1307.7079 [math.AP]AbstractReferencesReviewsResources

Mean value formulas for solutions of some degenerate elliptic equations and applications

Hugo Aimar, Gastón Beltritti, Ivana Gómez

Published 2013-07-26Version 1

We prove a mean value formula for weak solutions of $div(|y|^{a}\grad u)=0$ in $\mathbb{R}^{n+1}=\{(x,y): x\in\mathbb{R}^{n}, y\in\mathbb{R}\}$, $-1<a<1$ and balls centered at points of the form $(x,0)$. We obtain an explicit nonlocal kernel for the mean value formula for solutions of $(-\triangle)^{s}f=0$ on a domain $D$ of $\mathbb{R}^{n}$. When $D$ is Lipschitz we prove a Besov type regularity improvement for the solutions of $(-\triangle)^{s}f=0$.

Related articles: Most relevant | Search more
arXiv:1207.6375 [math.AP] (Published 2012-07-26, updated 2012-07-30)
Vector analysis on fractals and applications
arXiv:math/0608312 [math.AP] (Published 2006-08-13)
Analyzability in the context of PDEs and applications
arXiv:1107.5406 [math.AP] (Published 2011-07-27, updated 2012-05-17)
Weighted isoperimetric inequalities in cones and applications