arXiv:1307.7079 [math.AP]AbstractReferencesReviewsResources
Mean value formulas for solutions of some degenerate elliptic equations and applications
Hugo Aimar, Gastón Beltritti, Ivana Gómez
Published 2013-07-26Version 1
We prove a mean value formula for weak solutions of $div(|y|^{a}\grad u)=0$ in $\mathbb{R}^{n+1}=\{(x,y): x\in\mathbb{R}^{n}, y\in\mathbb{R}\}$, $-1<a<1$ and balls centered at points of the form $(x,0)$. We obtain an explicit nonlocal kernel for the mean value formula for solutions of $(-\triangle)^{s}f=0$ on a domain $D$ of $\mathbb{R}^{n}$. When $D$ is Lipschitz we prove a Besov type regularity improvement for the solutions of $(-\triangle)^{s}f=0$.
Comments: 9 pages
Categories: math.AP
Related articles: Most relevant | Search more
Vector analysis on fractals and applications
arXiv:math/0608312 [math.AP] (Published 2006-08-13)
Analyzability in the context of PDEs and applications
Weighted isoperimetric inequalities in cones and applications