arXiv Analytics

Sign in

arXiv:1307.3656 [math.PR]AbstractReferencesReviewsResources

Optimal Transport and Skorokhod Embedding

Mathias Beiglboeck, Martin Huesmann

Published 2013-07-13, updated 2014-10-30Version 2

The Skorokhod embedding problem is to represent a given probability as the distribution of Brownian motion at a chosen stopping time. Over the last 50 years this has become one of the important classical problems in probability theory and a number of authors have constructed solutions with particular optimality properties. These constructions employ a variety of techniques ranging from excursion theory to potential and PDE theory and have been used in many different branches of pure and applied probability. We develop a new approach to Skorokhod embedding based on ideas and concepts from optimal mass transport. In analogy to the celebrated article of Gangbo and McCann on the geometry of optimal transport, we establish a geometric characterization of Skorokhod embeddings with desired optimality properties. This leads to a systematic method to construct optimal embeddings. It allows us, for the first time, to derive all known optimal Skorokhod embeddings as special cases of one unified construction and leads to a variety of new embeddings. While previous constructions typically used particular properties of Brownian motion, our approach applies to all sufficiently regular Markov processes.

Related articles: Most relevant | Search more
arXiv:math/0504318 [math.PR] (Published 2005-04-15, updated 2005-10-19)
Convergence of values in optimal stopping and convergence of optimal stopping times
arXiv:1510.08323 [math.PR] (Published 2015-10-28)
On the dual problem of utility maximization in incomplete markets
arXiv:1909.02916 [math.PR] (Published 2019-09-06)
Optimal stopping times for a class of Ito diffusion bridges