arXiv Analytics

Sign in

arXiv:1307.1182 [math.DS]AbstractReferencesReviewsResources

Partial hyperbolicity and specification

Naoya Sumi, Paulo Varandas, Kenichiro Yamamoto

Published 2013-07-04Version 1

We study the specification property for partially hyperbolic dynamical systems. In particular, we show that if a partially hyperbolic diffeomorphism has two saddles with different indices, and stable manifold of one of them coincides with the strongly stable leaf, then it does not satisfy the specification property. As an application, we prove that there exists a $C^1$-open and dense subset $\mathcal P$ in the set of robustly non-hyperbolic transitive diffeomorphisms on a three dimensional closed manifold such that diffeomorphisms in $\mathcal P$ do not satisfy the specification property.

Related articles: Most relevant | Search more
arXiv:1103.3724 [math.DS] (Published 2011-03-18, updated 2012-11-26)
Partial hyperbolicity on 3-dimensional nilmanifolds
arXiv:1208.5660 [math.DS] (Published 2012-08-28)
Ergodicity and partial hyperbolicity on the 3-torus
arXiv:1408.6363 [math.DS] (Published 2014-08-27, updated 2014-08-29)
Chain-transitivity of partially hyperbolic diffeomorphisms on $\mathbb{T}^3$ isotopic to Anosov