arXiv:1306.2263 [cond-mat.stat-mech]AbstractReferencesReviewsResources
Spectrum of the totally asymmetric simple exclusion process on a periodic lattice - bulk eigenvalues
Published 2013-06-10, updated 2013-10-01Version 3
We consider the totally asymmetric simple exclusion process (TASEP) on a periodic one-dimensional lattice of L sites. Using Bethe ansatz, we derive parametric formulas for the eigenvalues of its generator in the thermodynamic limit. This allows to study the curve delimiting the edge of the spectrum in the complex plane. A functional integration over the eigenstates leads to an expression for the density of eigenvalues in the bulk of the spectrum. The density vanishes with an exponent 2/5 close to the eigenvalue 0.
Comments: 40 pages
Journal: J. Phys. A: Math. Theor. 46 (2013) 415001
Keywords: totally asymmetric simple exclusion process, bulk eigenvalues, periodic lattice, periodic one-dimensional lattice, bethe ansatz
Tags: journal article
Related articles: Most relevant | Search more
Spectrum of the totally asymmetric simple exclusion process on a periodic lattice -- first excited states
arXiv:2411.08480 [cond-mat.stat-mech] (Published 2024-11-13)
Single impurity in the Totally Asymmetric Simple Exclusion Process
arXiv:2301.04066 [cond-mat.stat-mech] (Published 2023-01-10)
Multi-species generalization of the totally asymmetric simple exclusion process