arXiv Analytics

Sign in

arXiv:1305.6221 [math.PR]AbstractReferencesReviewsResources

Gaussian multiplicative chaos and applications: a review

Rémi Rhodes, Vincent Vargas

Published 2013-05-27Version 1

In this article, we review the theory of Gaussian multiplicative chaos initially introduced by Kahane's seminal work in 1985. Though this beautiful paper faded from memory until recently, it already contains ideas and results that are nowadays under active investigation, like the construction of the Liouville measure in 2d-Liouville quantum gravity or thick points of the Gaussian Free Field. Also, we mention important extensions and generalizations of this theory that have emerged ever since and discuss a whole family of applications, ranging from finance, through the Kolmogorov-Obukhov model of turbulence to 2d-Liouville quantum gravity. This review also includes new results like the convergence of discretized Liouville measures on isoradial graphs (thus including the triangle and square lattices) towards the continuous Liouville measures (in the subcritical and critical case) or multifractal analysis of the measures in all dimensions.

Related articles: Most relevant | Search more
arXiv:1201.5870 [math.PR] (Published 2012-01-27)
Enlargements of filtrations and applications
arXiv:1012.5687 [math.PR] (Published 2010-12-28)
Coupling and Applications
arXiv:1105.1372 [math.PR] (Published 2011-05-06)
An inequality for means with applications