arXiv Analytics

Sign in

arXiv:1305.5603 [math.AG]AbstractReferencesReviewsResources

Critical points of master functions and the mKdV hierarchy of type A^2_2

A. Varchenko, T. Woodruff, D. Wright

Published 2013-05-24, updated 2017-02-20Version 2

We consider the population of critical points generated from the critical point of the master function with no variables, which is associated with the trivial representation of the affine Lie algebra $A^2_2$. We describe how the critical points of this population define rational solutions of the equations of the mKdV hierarchy associated with $A^2_2$.

Comments: Latex, 22 pages, misprints corrected. arXiv admin note: text overlap with arXiv:1207.2274
Categories: math.AG, nlin.SI
Related articles: Most relevant | Search more
arXiv:1811.03425 [math.AG] (Published 2018-11-03)
Critical points of master functions and mKdV hierarchy of type $C^{(1)}_{n}$
arXiv:1702.06169 [math.AG] (Published 2017-02-20)
Critical points of master functions and mKdV hierarchy of type $A^{(2)}_{2n}$
arXiv:1207.2274 [math.AG] (Published 2012-07-10, updated 2017-02-20)
Critical points of master functions and integrable hierarchies