arXiv Analytics

Sign in

arXiv:1305.2288 [math.GT]AbstractReferencesReviewsResources

Circle actions and scalar curvature

Michael Wiemeler

Published 2013-05-10, updated 2015-01-29Version 3

We construct metrics of positive scalar curvature on manifolds with circle actions. One of our main results is that there exist $S^1$-invariant metrics of positive scalar curvature on every $S^1$-manifold which has a fixed point component of codimension 2. As a consequence we can prove that there are non-invariant metrics of positive scalar curvature on many manifolds with circle actions. Results from equivariant bordism allow us to show that there is an invariant metric of positive scalar curvature on the connected sum of two copies of a simply connected semi-free $S^1$-manifold $M$ of dimension at least six provided that $M$ is not $\text{spin}$ or that $M$ is $\text{spin}$ and the $S^1$-action is of odd type. If $M$ is spin and the $S^1$-action of even type then there is a $k>0$ such that the equivariant connected sum of $2^k$ copies of $M$ admits an invariant metric of positive scalar curvature if and only if a generalized $\hat{A}$-genus of $M/S^1$ vanishes.

Comments: 25 pages; several changes according to comments of a referee made; to appear in Trans. Am. Math. Soc
Categories: math.GT, math.DG
Subjects: 53C21, 57S15
Related articles: Most relevant | Search more
arXiv:1506.04073 [math.GT] (Published 2015-06-12)
Invariant metrics of positive scalar curvature on $S^1$-manifolds
arXiv:1410.8350 [math.GT] (Published 2014-10-30)
A note on semi-conjugacy for circle actions
arXiv:2303.15396 [math.GT] (Published 2023-03-27)
On circle actions with exactly three fixed points