arXiv Analytics

Sign in

arXiv:1304.2709 [math-ph]AbstractReferencesReviewsResources

Spectral dimension and diffusion in multi-scale spacetimes

Gianluca Calcagni, Giuseppe Nardelli

Published 2013-04-09, updated 2013-12-10Version 2

Starting from a classical-mechanics stochastic model encoded in a Langevin equation, we derive the natural diffusion equation associated with three classes of multiscale spacetimes (with weighted, ordinary, and "q-Poincar\'e" symmetries). As a consistency check, the same result is obtained by inspecting the propagation of a quantum-mechanical particle in a disordered environment. The solution of the diffusion equation displays a time-dependent diffusion coefficient and represents a probabilistic process, classified according to the statistics of the noise in the Langevin equation. We thus illustrate, also with pictorial aids, how spacetime geometries can be more completely catalogued not only through their Hausdorff and spectral dimension, but also by a stochastic process. The spectral dimension of multifractional spacetimes is then computed and compared with what was found in previous studies, where a diffusion equation with some open issues was assumed rather than derived. These issues are here discussed and solved, and they point towards the model with q-Poincar\'e symmetries.

Comments: 23 pages, 3 multiple figures, 1 table. v2: introduction considerably expanded to highlight the main results, typos corrected, references added
Journal: Phys. Rev. D 88, 124025 (2013)
Related articles: Most relevant | Search more
arXiv:math-ph/0607020 (Published 2006-07-11)
The spectral dimension of generic trees
arXiv:1604.04819 [math-ph] (Published 2016-04-17)
Small Mass Limit of a Langevin Equation on a Manifold
arXiv:1104.4299 [math-ph] (Published 2011-04-21, updated 2012-02-20)
On and Off-diagonal Sturmian operator: dynamic and spectral dimension