arXiv:1304.2323 [math.LO]AbstractReferencesReviewsResources
AD and Jónsson cardinals in L(R)
Steve Jackson, Richard Ketchersid, Farmer Schlutzenberg, W. Hugh Woodin
Published 2013-04-08, updated 2015-10-30Version 2
Assume $\mathsf{ZF}+\mathsf{AD}+V=L(\mathbb{R})$ and let $\kappa<\Theta$ be an uncountable cardinal. We show that $\kappa$ is J\'onsson, and that if $\mathrm{cof}(\kappa)=\omega$ then $\kappa$ is Rowbottom. We also establish some other partition properties.
Comments: This version corresponds to the published version. The formatting in the published version differs a little from this version. 17 pages
Journal: The Journal of Symbolic Logic, Volume 79, Issue 4, December 2014, pp. 1184--1198
DOI: 10.1017/jsl.2014.49
Categories: math.LO
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2204.06874 [math.LO] (Published 2022-04-14)
A Note on Edge Colorings and Trees
arXiv:math/0501421 [math.LO] (Published 2005-01-24)
Some partition properties for measurable colourings of omega-one^2
arXiv:2303.14252 [math.LO] (Published 2023-03-24)
Long chains in the Rudin-Frolík order for uncountable cardinals