arXiv:1304.1626 [math.RT]AbstractReferencesReviewsResources
Geometrical characterization of semilinear isomorphisms of vector spaces and semilinear homeomorphisms of normed spaces
Published 2013-04-05, updated 2013-09-25Version 2
Let $V$ and $V'$ be vector spaces over division rings (possible infinite-dimensional) and let ${\mathcal P}(V)$ and ${\mathcal P}(V')$ be the associated projective spaces. We say that $f:{\mathcal P}(V)\to {\mathcal P}(V')$ is a PGL-{\it mapping} if for every $h\in {\rm PGL}(V)$ there exists $h'\in {\rm PGL}(V')$ such that $fh=h'f$. We show that for every PGL-bijection the inverse mapping is a semicollineation. Also, we obtain an analogue of this result for the projective spaces associated to normed spaces.
Related articles: Most relevant | Search more
Parking functions and vertex operators
arXiv:0704.3840 [math.RT] (Published 2007-04-29)
Produit d'entrelacement et action triangulaire d'algèbres de Lie
arXiv:1606.01942 [math.RT] (Published 2016-06-06)
Linear versus set valued Kronecker representations