arXiv Analytics

Sign in

arXiv:1304.0996 [math.AP]AbstractReferencesReviewsResources

The initial value problem for the binormal flow with rough data

Valeria Banica, Luis Vega

Published 2013-04-03, updated 2014-03-17Version 2

In this article we consider the initial value problem of the binormal flow with initial data given by curves that are regular except at one point where they have a corner. We prove that under suitable conditions on the initial data a unique regular solution exists for strictly positive and strictly negative times. Moreover, this solution satisfies a weak version of the equation for all times and can be seen as a perturbation of a suitably chosen self-similar solution. Conversely, we also prove that if at time t = 1 a small regular perturbation of a self-similar solution is taken as initial condition then there exists a unique solution that at time t = 0 is regular except at a point where it has a corner with the same angle as the one of the self-similar solution. This solution can be extended for negative times. The proof uses the full strength of the previous papers [9], [2], [3] and [4] on the study of small perturbations of self-similar solutions. A compactness argument is used to avoid the weighted conditions we needed in [4], as well as a more refined analysis of the asymptotic in time and in space of the tangent and normal vectors.

Comments: 34 pages, 3 figures, revised version, to appear in Ann. Sci. \'Ec. Norm. Sup\'er. (4)
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:1807.06948 [math.AP] (Published 2018-07-18)
Evolution of polygonal lines by the binormal flow
arXiv:1907.08789 [math.AP] (Published 2019-07-20)
On the energy of critical solutions of the binormal flow
arXiv:math/0505434 [math.AP] (Published 2005-05-20, updated 2006-03-21)
Quasi-geostrophic equations with initial data in Banach spaces of local measures