arXiv Analytics

Sign in

arXiv:1304.0906 [math.RT]AbstractReferencesReviewsResources

Seminormal forms and cyclotomic quiver Hecke algebras of type $A$

Jun Hu, Andrew Mathas

Published 2013-04-03, updated 2014-12-23Version 3

This paper shows that the cyclotomic quiver Hecke algebras of type $A$, and the gradings on these algebras, are intimately related to the classical seminormal forms. We start by classifying all seminormal bases and then give an explicit "integral" closed formula for the Gram determinants of the Specht modules in terms of the combinatorics which utilizes the KLR gradings. We then use seminormal forms to give a deformation of the KLR algebras of type $A$. This makes it possible to study the cyclotomic quiver Hecke algebras in terms of the semisimple representation theory and seminormal forms. As an application we construct a new distinguished graded cellular basis of the cyclotomic KLR algebras of type $A$.

Comments: Latex, 51 pages. Updated introduction. Example of B-basis added
Categories: math.RT, math.CO, math.GR
Subjects: 20G43, 20C08, 20C30
Related articles: Most relevant | Search more
arXiv:1310.2142 [math.RT] (Published 2013-10-08, updated 2014-06-17)
Cyclotomic quiver Hecke algebras of type A
arXiv:2209.00134 [math.RT] (Published 2022-08-31)
Content systems and deformations of cyclotomic KLR algebras of type $A$ and $C$
arXiv:2302.14477 [math.RT] (Published 2023-02-28)
Representation type of cyclotomic quiver Hecke algebras of type $A_\ell^{(1)}$