arXiv Analytics

Sign in

arXiv:1304.0656 [math.AP]AbstractReferencesReviewsResources

Estimates for rough Fourier integral and pseudodifferential operators and applications to the boundedness of multilinear operators

Salvador Rodríguez-López, Wolfgang Staubach

Published 2013-04-02, updated 2014-07-02Version 2

We study the boundedness of rough Fourier integral and pseudodifferential operators, defined by general rough H\"ormander class amplitudes, on Banach and quasi-Banach $L^p$ spaces. Thereafter we apply the aforementioned boundedness in order to improve on some of the existing boundedness results for H\"ormander class bilinear pseudodifferential operators and certain classes of bilinear (as well as multilinear) Fourier integral operators. For these classes of amplitudes, the boundedness of the aforementioned Fourier integral operators turn out to be sharp. Furthermore we also obtain results for rough multilinear operators.

Comments: arXiv admin note: substantial text overlap with arXiv:1111.4652 Various typos have been eliminated
Categories: math.AP
Subjects: 35S30, 42B20, 42B99
Related articles: Most relevant | Search more
arXiv:1207.6375 [math.AP] (Published 2012-07-26, updated 2012-07-30)
Vector analysis on fractals and applications
arXiv:math/0608312 [math.AP] (Published 2006-08-13)
Analyzability in the context of PDEs and applications
arXiv:math/0311150 [math.AP] (Published 2003-11-10)
Estimates for the Dirichlet-wave equation and applications to nonlinear wave equations