arXiv Analytics

Sign in

arXiv:1304.0488 [math.NT]AbstractReferencesReviewsResources

A note on the Duffin-Schaeffer conjecture

Liangpan Li

Published 2013-04-01Version 1

Given a sequence of real numbers $\{\psi(n)\}_{n\in\mathbb{N}}$ with $0\leq \psi(n)<1$, let $W(\psi)$ denote the set of $x\in[0,1]$ for which $|xn-m|<\psi(n)$ for infinitely many coprime pairs $(n,m)\in\mathbb{N}\times\mathbb{Z}$. The purpose of this note is to show that if there exists an $\epsilon>0$ such that $\sum_{n\in\mathbb{N}}\psi(n)^{1+\epsilon}\cdot\frac{\varphi(n)}{n}=\infty,$ then the Lebesgue measure of $W(\psi)$ equals 1.

Comments: Accepted by the Uniform Distribution Theory journal
Categories: math.NT
Subjects: 11J83
Related articles: Most relevant | Search more
arXiv:1907.04593 [math.NT] (Published 2019-07-10)
On the Duffin-Schaeffer conjecture
arXiv:0811.1234 [math.NT] (Published 2008-11-07, updated 2009-03-20)
The Duffin-Schaeffer Conjecture with extra divergence
arXiv:1305.1685 [math.NT] (Published 2013-05-08, updated 2013-09-04)
A note on the Duffin-Schaeffer conjecture with slow divergence