arXiv:1303.0927 [math.NA]AbstractReferencesReviewsResources
Weak Galerkin Finite Element Methods for the Biharmonic Equation on Polytopal Meshes
Published 2013-03-05Version 1
A new weak Galerkin (WG) finite element method is introduced and analyzed in this paper for the biharmonic equation in its primary form. This method is highly robust and flexible in the element construction by using discontinuous piecewise polynomials on general finite element partitions consisting of polygons or polyhedra of arbitrary shape. The resulting WG finite element formulation is symmetric, positive definite, and parameter-free. Optimal order error estimates in a discrete $H^2$ norm is established for the corresponding WG finite element solutions. Error estimates in the usual $L^2$ norm are also derived, yielding a sub-optimal order of convergence for the lowest order element and an optimal order of convergence for all high order of elements. Numerical results are presented to confirm the theory of convergence under suitable regularity assumptions.