arXiv Analytics

Sign in

arXiv:1302.6597 [math.NT]AbstractReferencesReviewsResources

Independence of l-adic representations of geometric Galois groups

Gebhard Boeckle, Wojciech Gajda an Sebastian Petersen

Published 2013-02-26, updated 2013-10-15Version 2

Let k be an algebraically closed field of arbitrary characteristic,let K/k be a finitely generated field extension and let X be a separated scheme of finite type over K. For each prime ell, the absolute Galois group of K acts on the ell-adic etale cohomology modules of X. We prove that this family of representations varying over ell is almost independent in the sense of Serre, i.e., that the fixed fields inside an algebraic closure of K of the kernels of the representations for all ell become linearly disjoint over a finite extension of K. In doing this, we also prove a number of interesting facts on the images and ramification of this family of representations.

Related articles: Most relevant | Search more
arXiv:math/0007211 [math.NT] (Published 2000-07-20)
Relatively projective groups as absolute Galois groups
arXiv:1211.5469 [math.NT] (Published 2012-11-23, updated 2015-07-02)
Galois action on knots I: Action of the absolute Galois group
arXiv:1412.7265 [math.NT] (Published 2014-12-23)
Triple Massey products and absolute Galois groups