arXiv Analytics

Sign in

arXiv:1302.2061 [math.DG]AbstractReferencesReviewsResources

On Families in Differential Geometry

Giovanni Moreno

Published 2013-02-08Version 1

Families of objects appear in several contexts, like algebraic topology, theory of deformations, theoretical physics, etc. An unified coordinate-free algebraic framework for families of geometrical quantities is presented here, which allows one to work without introducing ad hoc spaces, by using the language of differential calculus over commutative algebras. An advantage of such an approach, based on the notion of sliceable structures on cylinders, is that the fundamental theorems of standard calculus are straightforwardly generalized to the context of families. As an example of that, we prove the universal homotopy formula.

Comments: 19 pages. Accepted for publication on International Journal of Geometric Methods in Modern Physics (8-2-2013)
Categories: math.DG, math.AC
Subjects: 53C15, 58A05, 58A10, 58H15, 58C99
Related articles: Most relevant | Search more
arXiv:1707.01145 [math.DG] (Published 2017-07-04)
Quasi-coherent sheaves in differential geometry
arXiv:math/0303056 [math.DG] (Published 2003-03-05, updated 2003-03-08)
Differential geometry of surfaces and Heisenberg ferromagnets
arXiv:2109.15253 [math.DG] (Published 2021-09-30, updated 2022-02-09)
Differential geometry of $\mathsf{SO}^\ast(2n)$-type structures