arXiv:1301.6194 [math.DS]AbstractReferencesReviewsResources
Stability of Relative Equilibria in the Planar N-Vortex Problem
Published 2013-01-26Version 1
We study the linear and nonlinear stability of relative equilibria in the planar N-vortex problem, adapting the approach of Moeckel from the corresponding problem in celestial mechanics. After establishing some general theory, a topological approach is taken to show that for the case of positive circulations, a relative equilibrium is linearly stable if and only if it is a nondegenerate minimum of the Hamiltonian restricted to a level surface of the angular impulse (moment of inertia). Using a criterion of Dirichlet's, this implies that any linearly stable relative equilibrium with positive vorticities is also nonlinearly stable. Two symmetric families, the rhombus and the isosceles trapezoid, are analyzed in detail, with stable solutions found in each case.