arXiv Analytics

Sign in

arXiv:1301.5715 [math.PR]AbstractReferencesReviewsResources

The covariation for Banach space valued processes and applications

Cristina Di Girolami, Giorgio Fabbri, Francesco Russo

Published 2013-01-24, updated 2013-08-01Version 2

This article focuses on a new concept of quadratic variation for processes taking values in a Banach space $B$ and a corresponding covariation. This is more general than the classical one of M\'etivier and Pellaumail. Those notions are associated with some subspace $\chi$ of the dual of the projective tensor product of $B$ with itself. We also introduce the notion of a convolution type process, which is a natural generalization of the It\^o process and the concept of $\bar \nu_0$-semimartingale, which is a natural extension of the classical notion of semimartingale. The framework is the stochastic calculus via regularization in Banach spaces. Two main applications are mentioned: one related to Clark-Ocone formula for finite quadratic variation processes; the second one concerns the probabilistic representation of a Hilbert valued partial differential equation of Kolmogorov type.

Related articles: Most relevant | Search more
arXiv:1012.2484 [math.PR] (Published 2010-12-11, updated 2013-02-27)
Generalized covariation for Banach space valued processes, Itô formula and applications
arXiv:1201.5870 [math.PR] (Published 2012-01-27)
Enlargements of filtrations and applications
arXiv:1012.5687 [math.PR] (Published 2010-12-28)
Coupling and Applications