arXiv Analytics

Sign in

arXiv:1301.4946 [math.CO]AbstractReferencesReviewsResources

Binary matroids and local complementation

Lorenzo Traldi

Published 2013-01-21, updated 2014-11-08Version 6

We introduce a binary matroid M(IAS(G)) associated with a looped simple graph G. M(IAS(G)) classifies G up to local equivalence, and determines the delta-matroid and isotropic system associated with G. Moreover, a parametrized form of its Tutte polynomial yields the interlace polynomials of G.

Comments: This article supersedes arXiv:1301.0293. v2: 26 pages, 2 figures. v3 - v5: 31 pages, 2 figures v6: Final prepublication version
Journal: European Journal of Combinatorics 45 (2015), 21-40
Categories: math.CO
Subjects: 05C50
Related articles: Most relevant | Search more
arXiv:1301.0293 [math.CO] (Published 2013-01-02, updated 2013-01-27)
Interlace polynomials and Tutte polynomials
arXiv:1101.1246 [math.CO] (Published 2011-01-06, updated 2011-06-26)
On the linear algebra of local complementation
arXiv:math/0307096 [math.CO] (Published 2003-07-08, updated 2003-09-05)
Rayleigh Matroids