arXiv:1301.4946 [math.CO]AbstractReferencesReviewsResources
Binary matroids and local complementation
Published 2013-01-21, updated 2014-11-08Version 6
We introduce a binary matroid M(IAS(G)) associated with a looped simple graph G. M(IAS(G)) classifies G up to local equivalence, and determines the delta-matroid and isotropic system associated with G. Moreover, a parametrized form of its Tutte polynomial yields the interlace polynomials of G.
Comments: This article supersedes arXiv:1301.0293. v2: 26 pages, 2 figures. v3 - v5: 31 pages, 2 figures v6: Final prepublication version
Journal: European Journal of Combinatorics 45 (2015), 21-40
Categories: math.CO
Subjects: 05C50
Keywords: binary matroid, local complementation, tutte polynomial yields, looped simple graph, interlace polynomials
Tags: journal article
Related articles: Most relevant | Search more
Interlace polynomials and Tutte polynomials
On the linear algebra of local complementation
Rayleigh Matroids