arXiv Analytics

Sign in

arXiv:1301.3396 [math.FA]AbstractReferencesReviewsResources

Stability of Banach spaces via nonlinear $\varepsilon$-isometries

Duanxu Dai, Yunbai Dong

Published 2013-01-15, updated 2014-01-13Version 5

In this paper, we prove that the existence of an $\varepsilon$-isometry from a separable Banach space $X$ into $Y$ (the James space or a reflexive space) implies the existence of a linear isometry from $X$ into $Y$. Then we present a set valued mapping version lemma on non-surjective $\varepsilon$-isometries of Banach spaces. Using the above results, we also discuss the rotundity and smoothness of Banach spaces under the perturbation by $\varepsilon$-isometries.

Comments: 17 pages, accepted by J. Math. Anal. Appl
Journal: J.Math.Anal.Appl. 414 (2014) 996-1005
Categories: math.FA
Subjects: 46B04, 46B20, 26E25, 54C65, 54C60
Related articles: Most relevant | Search more
arXiv:1508.05059 [math.FA] (Published 2015-08-20)
Non-universal families of separable Banach spaces
arXiv:math/0206107 [math.FA] (Published 2002-06-11)
On sub B-convex Banach spaces
arXiv:math/9606209 [math.FA] (Published 1996-06-05)
Concerning the Bourgain $ell_1$ index of a Banach space